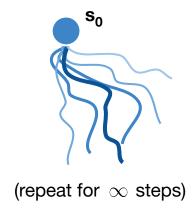
Temporal Difference Learning for Model Predictive Control

Nicklas Hansen, Xiaolong Wang*, Hao Su*

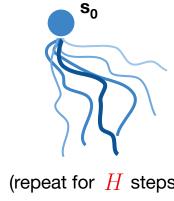
Data-Driven Model Predictive Control

- Plan using a *learned* model of the environment
- Objective $\mathbb{E}_{\Gamma} \sim \Pi_{ heta} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]$ intractable



Data-Driven Model Predictive Control

- Plan using a *learned* model of the environment
- Objective $\mathbb{E}_{\Gamma} \sim \Pi_{\theta} \left[\sum_{t=0}^{\infty} \gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$ intractable Instead find *locally optimal* trajectory $\mathbb{E}_{\Gamma} \sim \Pi_{\theta} \left[\sum_{t=0}^{H} \gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$
- Two major challenges:
 - Compounding model errors
 - Cost of long-horizon planning



How can TD-learning help MPC?

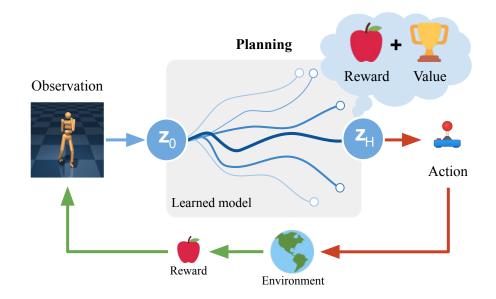
- Learning a terminal value function by TD-learning
 - MPC yields temporally *local* optimal solutions
 - A value function approximates the globally optimal solution

- Learning a task-oriented representation
 - Model-based RL typically models everything in the environment
 - Model-free RL only retains information predictive of reward

Inference (planning)

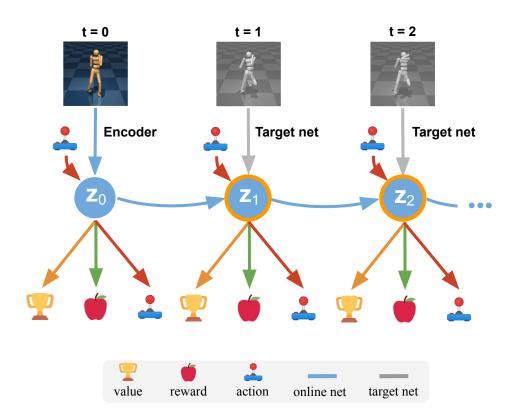
- Planning in latent space
- Return estimate:

$$\mathbb{E}_{\Gamma} \left[\gamma^H Q_{\theta}(\mathbf{z}_H, \mathbf{a}_H) + \sum_{t=0}^{H-1} \gamma^t R_{\theta}(\mathbf{z}_t, \mathbf{a}_t) \right]$$
 Value Rewards



Task-Oriented Latent Dynamics (TOLD) model

- Model only parts of environment that are predictive of reward
- Learned jointly with value function using TD-learning



TOLD minimizes the objective

$$\mathcal{J}(\theta; \Gamma) = \sum_{i=t}^{t+H} \lambda^{i-t} \mathcal{L}(\theta; \Gamma_i), \qquad (7)$$

where

$$\mathcal{L}(\theta; \Gamma_{i}) = c_{1} \underbrace{\|R_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - r_{i}\|_{2}^{2}}_{\text{reward}}$$

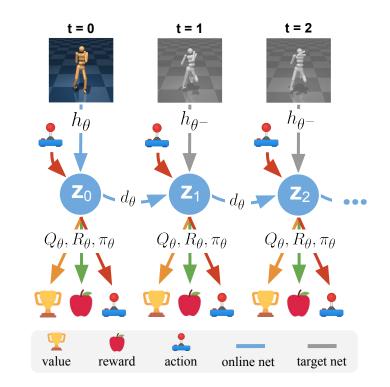
$$+ c_{2} \underbrace{\|Q_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - (r_{i} + \gamma Q_{\theta^{-}}(\mathbf{z}_{i+1}, \pi_{\theta}(\mathbf{z}_{i+1})))\|_{2}^{2}}_{\text{value}}$$

$$+ c_{3} \underbrace{\|d_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - h_{\theta^{-}}(\mathbf{s}_{i+1})\|_{2}^{2}}_{\text{latent state consistency}}$$

$$(10)$$

and the policy minimizes

$$\mathcal{J}_{\pi}(\theta; \Gamma) = -\sum_{i=t}^{t+H} \lambda^{i-t} Q_{\theta}(\mathbf{z}_i, \pi_{\theta}(\operatorname{sg}(\mathbf{z}_i))), \qquad (11)$$



Why learn a policy?

- Planning: policy action proposals speed up convergence
- Learning: estimating Q-targets via planning is very slow; use policy instead

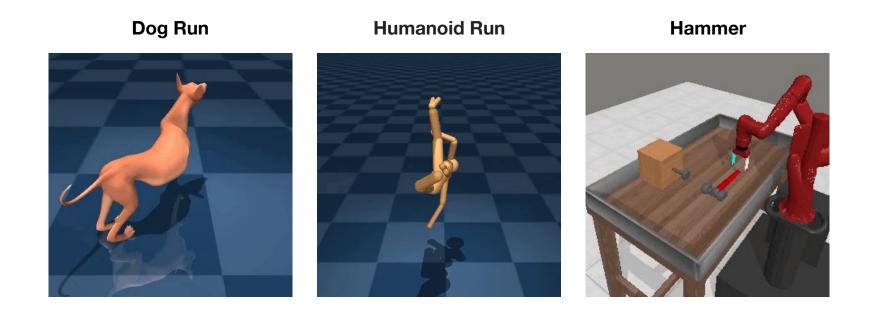
$$\mathcal{L}(\theta; \Gamma_{i}) = c_{1} \underbrace{\|R_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - r_{i}\|_{2}^{2}}_{\text{reward}}$$

$$+ c_{2} \underbrace{\|Q_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - (r_{i} + \gamma Q_{\theta^{-}}(\mathbf{z}_{i+1}, \pi_{\theta}(\mathbf{z}_{i+1})))\|_{2}^{2}}_{\text{value}}$$

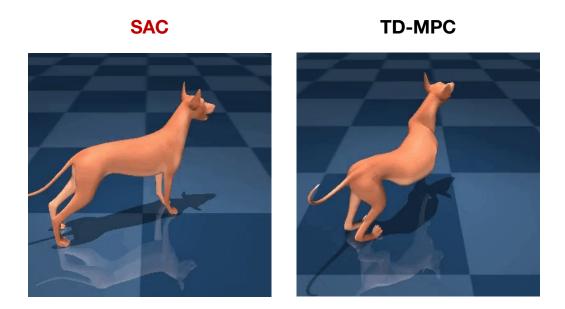
$$+ c_{3} \underbrace{\|d_{\theta}(\mathbf{z}_{i}, \mathbf{a}_{i}) - h_{\theta^{-}}(\mathbf{s}_{i+1})\|_{2}^{2}}_{\text{latent state consistency}}$$

$$(10)$$

TD-MPC solves *challenging* continuous control problems

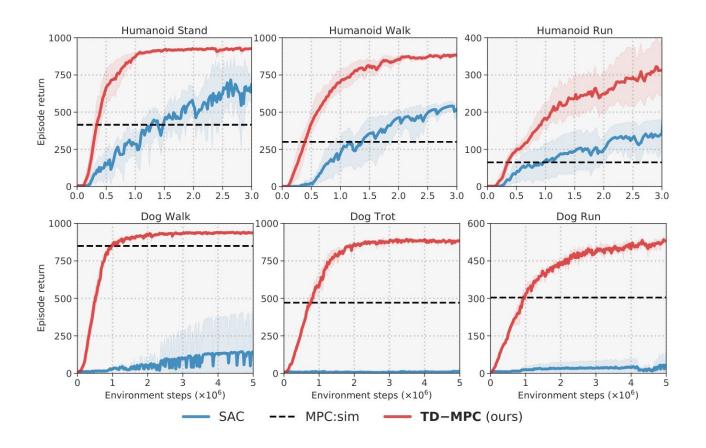


TD-MPC solves *challenging* continuous control problems

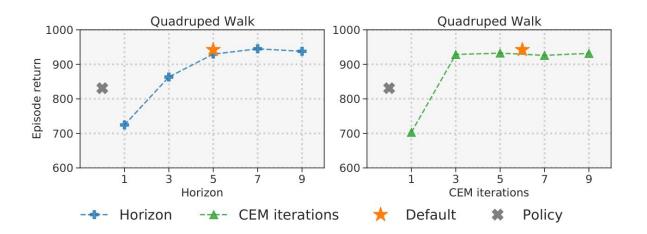


TD-MPC solves *challenging* continuous control problems

SAC **TD-MPC**



More planning → better performance



Variable budget at test-time

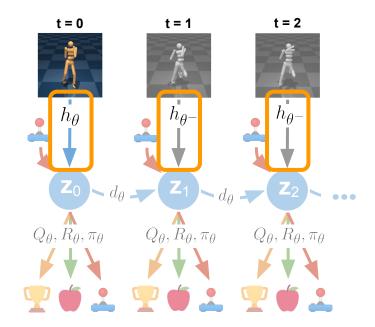
Replace MLP encoder with CNN → competitive performance on *image-based RL*

	Model-free				Model-based				Ours
100k env. steps	SAC State	SAC Pixels	CURL	DrQ	PlaNet	Dreamer	MuZero*	Eff.Zero*	TD-MPC
Cartpole Swingup	812 ± 45	419 ± 40	$597{\pm}170$	$759 {\pm} 92$	563 ± 73	326 ± 27	219 ± 122	$\textbf{813} {\pm} \textbf{19}$	770±70
Reacher Easy	919 ± 123	$145{\pm}30$	$517{\pm}113$	601 ± 213	82 ± 174	$314{\pm}155$	$493{\pm}145$	$952 {\pm} 34$	628 ± 105
Cup Catch	$957{\pm}26$	312 ± 63	$772{\pm}241$	$913 {\pm} 53$	$710{\pm}217$	$246{\pm}174$	$542{\pm}270$	$942{\pm}17$	$933{\pm}24$
Finger Spin	$672{\pm}76$	$166{\pm}128$	$779{\pm}108$	$901 {\pm} 104$	560 ± 77	$341{\pm}70$	_	_	$943 {\pm} 59$
Walker Walk	604 ± 317	42 ± 12	$344{\pm}132$	$612{\pm}164$	221 ± 43	$277{\pm}12$	-	_	$577{\pm}208$
Cheetah Run	$228{\pm}95$	103 ± 38	$307{\pm}48$	$344 {\pm} 67$	$165{\pm}123$	$235{\pm}137$	_	_	222±88

I D-IVIPC

TD-MPC is *input-agnostic*; just change *h*

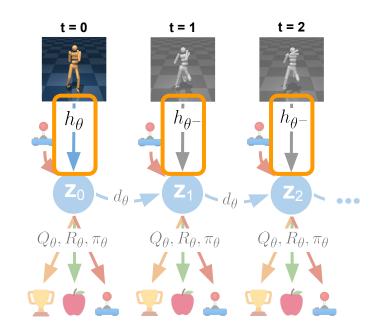
• Trivially extended to multi-modal RL



TD-MPC is *input-agnostic*; just change *h*

Trivially extended to multi-modal RL

Proprioceptive data + egocentric camera



TD-MPC matches the *time to solve* of SAC but uses far less data

		W	alker Walk	Humanoid Stand		
Wall-time (h)	SAC	LOOP	MPC:sim	TD-MPC	SAC	TD-MPC
time to solve \	0.41	7.72	0.91	0.47	9.31	9.39
h/500k steps ↓	1.41	18.5	_	5.60	1.82	12.94

I D-IVIPC

nicklashansen.github.io/td-mpc